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Abstract. The aim of this study is to detect the dominant tree height in forest stands using LiDAR (Light 

detection and ranging) data. The dominant tree height is obtained from LiDAR data and that is compared with 

the forest inventory data from the State Forest Service (SFS). Results are analysed by dominant species, growth 

conditions and topography. Sample plots are selected randomly and the forest inventory data are obtained 

separately from LiDAR data and may cause some errors in terms of tree height. Data processing methods are 

outlined for detection of individual trees and terrain depressions. The average tree height from the LiDAR data is 

compared to that from the SFS database. The results show that the average height of a forest stand obtained from 

LiDAR is mostly up to 2 meters smaller comparing with the SFS database, depending on the dominant species 

and stand age. The most accurate results are obtained in forest stands with pine as a dominant tree species and in 

dry forest growth conditions. Comparison with trees growing in terrain depressions and outside them shows a 

significant difference. For more precise measurements in dynamics more LiDAR flights and higher point density 

are recommended.  
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Introduction 

Identification of individual trees using remote sensing data began at the end of the last century. 

Initially, passive data or aerial and satellite data were used, but due to insufficient resolution of the 

images, the possibilities for data acquisition and analysis were limited. With the advancement of 

technology, researchers started to use active data sources, LiDAR and radar technology [1]. The 

LiDAR technology is widely used in local forest inventory and combining with spectral information 

can distinguish individual trees even at a level of different species [2;3]. A research based on LiDAR 

data typically uses digital elevation models, digital surface models, and canopy height models. 

Individual tree detection using LiDAR data can be done in different ways. Popular methods are raster 

data processing, point cloud analysis, tree geometry reconstruction, and raster, point and raw data 

combination. The most popular method for individual tree detection is based on raster data analysis 

[4]. Digital elevation and surface models can be generated from laser scanning point clouds, which 

consist of several points per square meter [5]. LiDAR data, due to their high resolution, can be used to 

measure the horizontal and vertical structure of a forest stand. It is possible to measure a forest stand 

describing the parameters, such as the tree height, forest floor topography, forest stand biomass, 

number of trees and circumference of tree crown [6]. 

Given the fact that passive data dominated the data sources for individual tree detection studies 

before 2005, methods based on raster data have been used longer than other approaches. Traditional 

tree detection and obtaining algorithms (e.g., local maximum, region-growing, and watershed analysis) 

can be used on a canopy height model (CHM), which is extracted from the LiDAR point cloud, 

interpolated and smoothed [7]. In addition to CHM, researchers have also considered other LiDAR 

based products. Chen et al. [2] proposed the canopy maximum model (CMM) for eliminating the error 

caused by branches within crowns. CMM was successfully applied in subsequent studies [8]. Using 

most traditional approaches, tree detection is generally based on finding local maxima within the 

image, and crown delineation requires outlining minimum valleys and watershed segmentation [4]. 

These algorithms, which were initially developed for application to passive data, have undergone a 

range of improvement efforts in recent years [6;10].  

Tree height and species composition may vary within individual forest stands due to soil wetness. 

A recent study evaluating the spatial distribution of wet mineral soils in forests in Latvia using LiDAR 

data gives a methodology for wet soil mapping [11]. In this study digital elevation model depressions 

and other indexes were used to detect wet soils and characterize tree growth conditions. 

Materials and methods 

The study area consists of 14 sample plots, 1 km
2
 each, containing 1352 forest stands in total. Fig. 

1 shows the location of the sample plots. LiDAR data, which are necessary for digital elevation model 
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(DEM), digital surface model (DSM) and CHM generation, are obtained from the Latvian Geospatial 

Information agency (LGIA). Average point cloud density in LiDAR point cloud datasets is between 4 

and 14 points per square meter. Minimum ground point density should excess 1.5 points per square 

meter. Selected forest stands are measured with LiDAR sensor in ± 1 calendar year compared to the 

version of the SFS database. 

 

Fig. 1. Study sites 

Data processing has been done in GRASS GIS 7.4. software. DEM is made in 2x2 m resolution, 

DSM is made in 0.5x0.5 m resolution. DEM is made in a coarser resolution, because terrain in Latvia 

is relatively flat and raster files made in coarser resolution require less processing resources without 

losing information about the properties of terrain. DSM is made as precise as possible for given 

density of the obtained LiDAR point cloud. 

Local maximums in CHM are defined using the sliding window principle. Each cell is assigned a 

value that corresponds to the maximum value of CHM within 8 neighbouring cells. Since the size of 

the CHM raster cell is 0.5x0.5 m, the treetop must be at least 1.5 meters away from the other top of the 

tree to be identified in the new raster image as an individual tree. If a tree has more than one top, each 

top may be counted as a separate tree. For more precise outcome, LiDAR data with higher point 

density are required.  

Locations of dominant trees are then obtained using equation (1). This formula finds centre points 

of previously generated local maximums. Since all peaks in local maximum raster now are represented 

as 9 cell squares with equal values, it is possible to locate central cells of those squares. 

if((X[-1,-1] == X[0,0]&&(X[-1,0] == X[0,0])&&(X[-1,-1] == X[0,0])&& 

 (X[0,-1]) == X[0,0])&&(X[0,1] == X[0,0]&&(X[1,-1] == X[0,0])&& (1) 

 (X[1,0] == X[0,0])&&(X[1,1] == X[0,0]),X,null()) 

where X – raster of local maxima, numbers in square brackets are coordinates for neighbouring 

pixels;  

 operator == means “logical equal”; 

 operator && means “logical and”. 

Further analysis is done to select local maximums that represent trees and not terrain peaks or 

other landscape elements. Definition of forest in Latvia determines that forest is an ecosystem in 

which the tree height can reach at least 5 m [13], so the cells with the CHM values below 5 m are 

filtered out by equation (2). 
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 if (X < 5, null(), X) (2) 

where X – CHM raster map 

Final raster map, which contains dominant trees and information about the tree height, is 

converted to polygon vector data format and for each polygon a centroid is added. Every point 

represents an individual tree and after that, v.vect.stats is used to intersect the obtained data of 

individual trees with polygons of forest stands from the SFS database. 

Characterization of forest growth conditions based on depressions in topography is made using 

SAGA GIS algorithm Fill Sinks (Wang&Liu) [12]. Fill sinks is an algorithm that is often used in 

hydrological modelling to discern the flow direction. Raster map of depressions is generated by 

extracting original DEM from filled DEM. Resulting raster map contains information about spatial 

distribution and depth of depressions in given area. 

Depression raster map is converted to polygon vector data format using GRASS GIS tool 

r.contour to outline depressions which are at least 0.1 m deep. Vector data about depressions are used 

to split the previously generated dominant tree point layer into trees that are growing in depressions 

and outside them within separate forest stands. 

Results and discussion 

This section shows how the height of trees determined by analysis of LiDAR data compares to the 

SFS database. Fig. 2 shows a comparison of the height of dominant trees by the dominant species: (a) 

scots pine, (b) Norway spruce, (c) birch and (d) grey alder and black alder. It can be seen that the 

height is most accurately determined for the pine (average underestimation of 1.8 m, R
2
 = 0.7993). 

This is due to the shape of the tree crown and the fact that this species is evergreen. The worst tree 

height determination is for deciduous trees (average underestimation of 1.9 m, R
2
 = 0,548 and 

R
2
 = 0.4872). LiDAR data are obtained in a leaf-off period and the first reflection has little chance of 

being reflected from the tree top. The greatest inaccuracies can be observed on the lowest deciduous 

trees, because both the trunk and the branches are comparatively thinner and therefore more difficult 

to record in the remote sensing data. 

 

Fig. 2. Tree height comparison by species 

(a) (b) 

(c) (d) 
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Tree height comparison between SFS and LiDAR data for different forest growth conditions is 

shown in Fig. 3. The figure shows a comparison of (a) forests on dry mineral soils, (b) forests on dry 

mineral soils, except Oxalidosa and Aegopodiosa, (c) forests on wet mineral soils, (d) forests on wet 

peatlands, (e) forests on drained mineral soils and (f) forests on drained peatlands. The best results are 

observed in forests on dry mineral soils, especially in less fertile forest types (average underestimation 

of 1.9 m, R
2
 = 0.7513). The most inaccurate measurements in the LiDAR data, on the other hand, are 

in wet forests on peatlands (average underestimation of 1.95 m, R
2
 = 0.3452). There is a coincidence 

that in forests on drained mineral soils and drained peatlands the determination of the tree height in 

remote sensing data is better than in forests on wet mineral soils and wet peatlands. It can be 

concluded that in forests on drained soils the tree growing conditions have improved and the forest 

stands become more homogeneous, hence LiDAR measurements are more accurate. 

 

Fig. 3. Tree height comparison by forest growth conditions 

The height of the dominant trees was also compared in the context of relief depressions (Fig. 4). 

Selected forest stands included area in local depressions with potentially hindered surface water runoff 

and the dominant tree species is scots pine. The values obtained from LiDAR data were compared. It 

has been observed that the trees growing in the depressions are up to 3 m shorter than the trees in the 

rest of the forest stand. The differences in the tree height are increasing as the stands grow older. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 4. Tree height comparison between relief depressions and rest of forest stand 

The obtained results confirm that the method used in this study can be used to evaluate tree 

growth conditions and to estimate the tree height. The results show that the average dominant tree 

height from the LiDAR data is up to 2 meters lower than in the SFS database. Similar results have 

been observed in previous studies, when remote sensing data were compared with measurements from 

NFI plot plots [11]. 

Conclusions 

1. LiDAR data can be used to determine the height of dominant trees, and the average tree height 

according to the measurements is up to 2 meters lower than in the SFS records.  

2. The best match between the LiDAR data and the SFS database is observed for forest stands where 

the dominant tree species is scots pine, because it is an evergreen species with a relatively wide 

crown. There is high possibility that the pulse emitted by the laser scanner will be reflected from 

the tree top.  

3. The results confirm that for trees growing in relief depressions the growth conditions are 

relatively poor comparing to the trees outside the depressions. The results show that the trees 

growing in the depressions are on average up to 3 m shorter. 
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